Total Synthesis of Liverwort Sesquiterpene Ketone (\pm)-Chiloscyphone via Intramolecular Aldol Condensation

Motoo TORI, Takeshi HASEBE, and Yoshinori ASAKAWA*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University,

Yamashiro-cho, Tokushima 770

(\pm)-Chiloscyphone, a sesquiterpene ketone isolated from the liverwort, has been synthesized starting from 3,4-dimethyl-2-cyclohexen-1-one via intramolecular aldol condensation.

Chiloscyphone $(\underline{1})$ is a sesquiterpene ketone isolated from the liverwort Chiloscyphus polyanthus $(L.)^{1}$ and the structure was revised recently as depicted in $\underline{1}$ by Connolly and his coworkers. We have developed the new synthetic route to $\underline{1}$ through intramolecular aldol condensation. One of the intermediates could be used for optical resolution and determination of the absolute configuration. We now report the successful synthesis of (\pm) -chiloscyphone $(\underline{1})$.

The cis dimethyl part was obtained by 1,4-addition⁴⁾ of the vinyl group to 3,4-dimethyl-2-cyclohexen-1-one (2) in the presence of CuBr/SMe₂. Ketal ester 4^{5}) was derived from 3 in six steps conversion. Alkylation (LDA/allyl bromide) of 4and ozonolysis $(CH_2Cl_2/-78^{\circ}C)$ followed by Zn/AcOH treatment afforded ketal aldehyde $\underline{5}$ in a good yield. When $\underline{5}$ was subjected to acidic conditions (pTsOH/acetone-H₂O), three products $(\underline{6}, 5)$ $\underline{7}, 5)$ and $\underline{8}^{5}$) were isolated in 35, 23, and 22% yield, respectively. Compound 6 showed the presence of the β proton of the α , β -unsaturated ketone system [δ 6.54 (dd, J=3.3 and 2.1 Hz)], two methyl groups [δ 1.02 (d, J=3.4 Hz) and 1.07 (s)] and methoxycarbonyl group [δ 3.67 (s)] in its 1 H NMR spectrum. The spectral data of compound 7 also suggested the similar structure to 6, indicating that these two are isomers in each other concerning the 6-position. When the methyl group at either C-4 or C-5 of $\underline{6}$ was irradiated, NOE's into H-6 were observed. While irradiation at H-6 of $\frac{7}{2}$ caused NOE into H-4. These experiments indicated the orientation of the methoxycarbonyl group as depicted in the formulae. The third compound 8 [IR 3450 cm⁻¹, δ 9.83 (s)] was obviously hydrogen bonded ketol. Since 8 was converted to 6 under the same reaction conditions, the orientation of methoxycarbonyl group was determined to be trans to both methyl groups.

The conversion of enone $\underline{6}$ to olefin $\underline{10}$ was accomplished in three steps. Hydrogenation of enone $\underline{6}$ (H₂/Pd-C) followed by NaBH₄ reduction afforded two isomeric alcohols 9, which were dehydrated (POCl₃/Py) to give a mixture of trisubstituted olefin $\underline{10}$ [δ 5.39 (1H, m)] and disubstituted olefin $\underline{11}$ [δ 5.61 (2H, m)]. This mixture was separated by AgNO₃ impregnated silica-gel column chromatography. The olefin $\underline{10}$ was reduced (LiAlH₄), oxidized (Swern oxidation), alkylated [CH₂=C(Me)MgBr], and oxidized (Jones oxidation) to afford $\underline{1}$.6)

Optical resolution of 9 should be possible and the absolute configuration

2060 Chemistry Letters, 1988

could be determined by conversion to the corresponding ketone. The work along these lines is under way.

References

- S. Hayashi, A. Matsuo, and T. Matsuura, Tetrahedron Lett., <u>1969</u>, 1599; A. Matsuo, Tetrahedron, <u>28</u>, 1203 (1972).
- 2) J. D. Connolly, L. J. Harrison, and D. S. Rycroft, J. Chem. Soc., Chem. Commun., 1982, 1236.
- 3) K. -G. Gerling and H. Wolf, Tetrahedron Lett., $\underline{26}$, 1293 (1985).
- 4) F. E. Ziegler and P. A. Wender, Tetrahedron Lett., 1974, 449.
- 5) All compounds show satisfactory spectral and analytical data.
- 6) The spectral data of the synthetic compound were identical with those reported in Ref. 1.

(Received October 17, 1988)